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Abstract-Optimization of chemical processes often leads to nonlinear programming problems that are non- 
convex. Such problems may possess many local optima, whose objective function values vary significantly from 
one to another. Thus identifying the global optimum is an important, albeit difficult, endeavor. A deterministic al- 
gorithm based on interval analysis branch and bound is proposed in this paper to be suitable for global op- 
timization of chemical processes. 
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INTRODUCTION 

Most chemical process optimization problems are nonlinear 
programming (NLP) problems in the following form. 

rain f(x) (P) 

subject to 

g(x)_<o 
h(x)= o 

where x ~ R~, f : R"--* R, g : R" --* Rt, and h : Rn-- ,  Rm. If  
the objective function and the feasible region are convex, e. 
g., when f and g are convex and h is linear, the problem is 
called a convex problem, which has only one local min- 
imum that is the global minimum. Most of chemical pro- 
cess optimization problems, however, have a nonconvex fea- 
sible region because of nonlinear equality constraints. There- 
fore, they are nonconvex, and in many cases, have multiple 
local optima. However, most optimization techniques current- 
ly used are local methods, which easily crash, and at best, find 
only one local optimum. The goal of this study is to devel- 
op a method for global optimization of chemical processes. 

Most global optimization algorithms belong to one of the 
two categories: (1) Stochastic approach and (2) Deterministic 
approach. Algorithms such as simulated annealing [Kirkpa- 
trick et al., 1983] and genetic algorithm [Goldberg, 1989] are 
based on the stochastic approach. These algorithms aim high 
probability of finding the global optimum, and do not guaran- 
tee the finite e-convergence (convergence to the global op- 
timum in finite computation steps for a given finite error tol- 
erance), or the global optimality of the obtained solution. Al- 
gorithms that use the deterministic approach such as branch 
and bound [Soland, 1971] guarantee the finite e-convergence 
and the global optimality of the obtained solution. 

tTowhomcorrespondenee should be addressed. 
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The deterministic approach to global optimization of chem- 
ical processes has actively been studied since the 1980%. Most 
of  the proposed algorithms are based on one of the follow- 
ing methods. 
1. Generalized Benders Decomposition (GBD) [Geoffrion, 1972] 

This algorithm iterates between a primal and a master 
which give upper and lower bounds respectively for the glo- 
bal optimum. Based on this approach, Duran and Grossmann 
[1986] proposed an Outer Approximation algorithm for a par- 
ticular class of Mixed Integer Nonlinear Programs (MINLP). 
Floudas et al. [1989] proposed Global Optimum Search (GOS) 
algorithm for general problems, which was considered very 
efficient, but Bagajewicz and Manousiouthakis [1991] indi- 
cated an error in this algorithm. Floudas and Visweswaran 
[1990] corrected the error, proposing Global Optimization Al- 
gorithm (GOP), but the computation time for convergence 
greatly increased. 
2. Unflerestimator Branch and Bound 

Soland [1971] presented an algorithm of the branch and 
bound type which solves a separable nonconvex problem 
by solution of a sequence of convex subproblems. Each con- 
vex subproblem, if feasible, gives a lower bound on the glo- 
bal minimum in its domain. Subproblems are discarded if 
they are infeasible or their lower bounds are higher than the 
upper bound which is set by the value of the objective func- 
tion at a feasible point. Feasible subproblems are divided into 
more subproblems, and the algorithm continues until the low- 
er bound converges to the upper bound. Based on this ap- 
proach, Ryoo and Sahinidis [1995] and Adjiman et al. [1996] 
proposed algorithms for chemical process optimization. 
3. Interval Analysis Branch and Bound 

Ratschek and Rokne [1988, 1991] presented a branch and 
bound algorithm which uses interval analysis to calculate the 
lower bounds. Unlike the above mentioned algorithms, their 
algorithm can be applied to any type of problems, not requir- 
ing any problem transformation. This algorithm was modifi- 
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ed and applied to chemical process optimization by Vaidyan- 
athan and E1-Halwagi [1994]. 

Global optimization of a nonconvex NLP is an NP (Non- 
Polynomially)-hard problem, and thus, when a deterministic 
algorithm is used, the computation time drastically (generally, 
exponentially) increases with the size of the problem. This 
is the reason that all the example problems in the papers that 
propose deterministic algorithms are extremely small. Chem- 
ical process optimization problems are generally highly non- 
linear, nonconvex, and very large. Therefore, the conventional 
deterministic algorithms are not suitable for chemical process 
optimization. Some people suggest that the stochastic approa- 
ch is practically the only way to global optimization of large 
problems. However, as the computer hardware is rapidly be- 
ing improved these days, it is still justifiable to study on the 
deterministic approach. 

The deterministic approach is frequently based on the bran- 
ch and bound technique. The problem is how to minimize the 
number of branching variables. A positive aspect of the branch 
and bound algorithm proposed by Soland [1971] is that bran- 
ching is required only for the variables that cause nonconvex- 
ity of the problem. Let us refer to such variables as non- 
convex variables. Unfortunately, however, in most chemical 
process optimization problems, all variables appear in non- 
linear equality constraints, and thus, all variables are non- 
convex variables. Therefore, the only method to reduce the 
number of branching variables for the conventional branch 
and bound technique is to reduce the total number of vari- 
ables in the problem based on the symbolic solution of the 
equality constraints. However, it is not easy to symbolically 
solve a large system of highly nonlinear equations. This pa- 
per presents a method for reducing the number of branching 
variables using the equality constraints without any symbolic 
manipulations. Too many nonlinear equality constraints are gen- 
erally a trouble, but in this work, they are the last hope. 

THE PROPOSED ALGORITHM 

The proposed algorithm is based on Algorithm 2 of Rats- 
chek and Rokne [1988]. Their algorithm always treats all 
variables as the branching variables even though there exist 
many equality constraints. Other interval analysis algorithms 
such as proposed by Vaidyanathan and E1-HMwagi [1994] also 
branch all variables. The algorithm proposed in this paper, 
however, exploits the equality constraints so that the inter- 
vals of some variables can be determined by those of other 
variables, and thus the number of branching variables can be 
reduced. Consider the following optimization problem in which 
variables are divided into two groups. 

min f(x, y) 

x, y 
subject to 

g(x, y ) < 0  

h(x, y ) = 0  

x ~  X := { x l x ~  R '~, - c o  < r <_ xj_< xy<  +co, j = 1,--., n~} 

y ~ Y : = { y l y @ R  '~, - c o < / _ < y j _ < f f < + c o ,  j = l , - - - , n y }  

where f, g, and h are continuous functions. The variables x 
and y are selected in such a way that the intervals of  vari- 
ables y denoted by Y, can be determined from the intervals 
of  variables x denoted by X, using the constraints in the 
above problem. 

The proposed algorithm is as follows. 
1. Interval Analysis Branch and Bound Algorithm 
1-1. Step 0. Initialization 

(1) Define X 1 := X. 
(2) Initialize the set of unsolved subproblem indices B ~-- 

{1} and the set of solved subproblem indices D ,--  O. 
(3) Set the upper bound on the global minimum U ~ +co 

or f(x ~ yO), where (x ~ yO) is any feasible point. 

1-2. Step 1. Interval Analysis and Bounding. For all k E B, 

(1) Remove k from B, and enter k into D. 
(2) Determine yk corresponding to X k. 
(3) Set yk ,--  yk fq y .  
(4) If yk = 0 or lb f(X k, yl-) > U or lb ~(X k, yk) > e~ or lb 

h,(X k, Y~) > e e or ub h,(X k, ye) < _ e  e for some i, then 
remove k from D. 

(5) Otherwise, 
(a) Set x k := mid X k. 
(b) Determine yk corresponding to x k. 
(c) If yk E yk and g~(x k, yk) <__ er and h,(x k, yk) E [ - e~ 

+er for all i, then 
(i) Update U ,-- min(U, f(x k, y~)). 
(ii) Remove all r from D such that lb f(X', Y') > U. 

1-3. Step 2. Convergence Test and Branching 

(1) If D = 0 ,  terminate as the problem is infeasible. 
(2) Otherwise, 

(a) Select k ~ D such that lb f(X k, yk) = min, Eo lb f 
(xr, Yr). 

(b) if yk ~ u and f(x ~ , / ) - l b  f(X ~, Y~) _< Eo and 
( xk, Y~) <-- ~r and h,(x k, yk) E [ - E  i, +%] for all i, 
then terminate with (x k, yk) as a global solution. 

(c) Otherwise, 
(i) Select varable xj which has the maximum length 

of interval in X k. 
(ii) Bisect X k normal to coordinate xj, getting X ~ 

and X q such that X k = X p U X q, where p, q ~ D. 
(iii) Remove k from D, and enter p and q into B. 
(iv) Go to Step 1. 

The operators lb and ub in the above algorithm represent 
lower bound and upper bound respectively, and they can be 
calculated by any interval arithmetic method such as natural 
inclusion, centered-form inclusion, etc. [Ratschek and Rokne, 
1988]. The natural inclusion has been used in this work, 
which is defined as follows. 

[a, b] + [c, d] = [a + c, b + d] 
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[a, b] - [c, d] = [a - d, b - c] 

[a, b] • [c, d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)] 

[a, b]/[c, d] = [min(a/c, a/d, b/c, b/d), max(a/c, a/d, b/c, b/ 
d)] if 0 ~ [c, d] 

The parameters s and s in the above algorithm are the feasi- 
bility tolerance and the optimality tolerance respectively. The 
values of e r and eo should be set to a moderately small po- 
sitive number based on the numerical scale of the problem. 
The value of e r in Step I(4), however, can be set to zero if 
the machine interval arithmetic [Ratschek and Rokne, 1988] 
is used to calculate the lower and upper bounds of  the con- 
straint functions. 

The proposed algorithm applies branching (bisection) to 
the x variables only. The finite e-convergence of the pro- 
posed algorithm is guaranteed if we select x and y such that 
the following property is satisfied. 

Proper ty  (Y) : For any X k C X, as w(X k) := ub X k - I b  
X~--, 0, w(y ')  ~ 0. 

This indicates that, for anywhere in the search space, if the 
intervals of the x variables approach zero, then the intervals 
of the y variables also approach zero. If this property is sat- 
isfied, we can safely apply branching to the x variables 
only. The convergence is guaranteed since the proof of con- 
vergence presented by Ratschek and Rokne [1988] still ap- 
plies to our case. If the above property is not satisfied, the 
convergence is not guaranteed. Nevertheless, however, if only 
the procedure converges, then the global optimality of  the 
obtained solution is still guaranteed. This is because the low- 
er bound of the objective function is always valid with or 
without Property (Y). 

The simplest case in which the intervals of y can be de- 
termined from those of x arises when the following type of 
equality constraints are available. 

A(x)y = b(x) (I) 

where A is an ny • n r matrix, b is an ny-dimensional column 
vector, and their elements are constants or functions of x 
only. If the coefficient matrix A includes a singular matrix 
for given intervals for x, i.e., 0 E [Ib det A(X), ub det A 
(X)], then Property (Y) is not satisfied. However, numerical 
experiments show that the proposed algorithm can still con- 
verge in such a case also. As mentioned before, if it con- 
verges, the global optimality of the obtained solution is gua- 
ranteed. If it fails to converge, we have to try a different set 
of the y variables. 

Chemical process optimization problems generally include 
many equality constraints, and many of them are of the type 
of Eq. (I). Furthermore, other types of equality constraints 
and inequality constraints can also be used to calculate the 
intervals of y from those of x. Therefore, the proposed algo- 
rithm is considered suitable for chemical process optimization. 

CASE STUDIES 

The following examples were used in this work for per- 

formance evaluation. 

(1) Design of a three stage process system with recycle 
[Stephanoploulos and Westerberg, 1975] 

(2) Reactor network design [Manousiouthakis and Sourlas, 
1992] 

(3) Heat exchanger network synthesis [Floudas and Ciric, 
1989] 

All local optima of these problems were found by an ex- 
haustive search using local optimizer G1NO [Winston, 1995], 
and the interval analysis algorithm proposed in this paper 
was programmed in FORTRAN and implemented on a Pen- 
tium 100 MHz computer. 
1. Example 1: Design of a Three Stage Process System with 
Recycle 

This is an example problem of Stephanopoulos and West- 
erberg [1975] which minimizes the capital cost of a three 
stage process with recycle as shown in Fig. 1. The problem 
formulation is as follows. 

min X10-6 06 04 + x  2 +X 3 - - 4 X 3 + 2 X 4 + 5 X s - - X  6 

subject to 

- 3 x  1 + x2-3x4=O 

- 2 x  2+ x 3 -  2x 5= 0 

4X4- -x r=O 

x~+2x4<4 

x2+xs_<4 

x3+x6--<6 

O_<x_<(3, 4, 4, 2, 2, 6) 

This problem has three local minima including the global 
minimum as listed in Table 1. Vaidyanathan and El-Halwa- 
gi [1994] indicated that the GBD algorithm of Floudas and 
Pardalos [1990] converged to a wrong solution, and report- 
ed that their interval analysis algorithm with the tolerance 
on the width of the solution box t;=0.001 and the accuracy 
of the objective function inclusion 8=0.01 located the global 
minimum consuming 436.4s on Sun SPARCstation 10. Ryoo 
and Sahinidis [1995] reported that their underestimator branch 
and bound algorithm with the optimality tolerance e=10 6 locat- 
ed the global minimum by solution of  only one subproblem, 

X4 

x l ~  I x2 x3 3 ] 

I 

Fig. 1. A three stage process system with recycle. 

r 
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Table 1. Computation results of example 1 

273 

Number of branching Convergence Objective Number of Computing 
Algorithm Class variables criterion function value subproblems time 

Floudas and GBD 0 - - 11.96 - - 
Pardalos [1990] (wrong solution) 

Vaidyanathan and Interval analysis 6 e=10 -3 - 13.402 - 436.4s on Sun 
E1-Halwagi [1994] 5=10 -2 SPARCstation 10 

Ryoo and Underestimator 6 e=10 -6 - 13.401904 1 0.5s on Sun 
Sahinidis [1995] SPARCstation 2 

This work Interval analysis 3 E/=10 -4 -- 13.40187 769 0.11S on Pentium 
Eo=10 4 100 MHz 

Local 1: f= - 4.258899 at x=(0, 0, 4, 0, 2, 0) 
Local 2: f = -  12.507887 at x=(0, 1.8, 3.6, 0.6, 0, 2.4) 
Local 3: f = -  13.401904 at x=(0.166667, 2, 4, 0.5, 0, 2) 

and the computation time was 0.5s on Sun SPARCstation 2. 
This problem has three equality constraints, and using these, 

the intervals of variables x2, x3, and x6 can be determined 
by those of Xl, x4, and xs. Exploiting this property, i.e., us- 
ing x~, x4, and x5 as the branching variables (the x variables 
in the algorithm), the proposed interval analysis branch and 
bound algorithm with E/=10 -4 and Eo=10 -4 required 769 sub- 
problems and computing time of 0.11s on Pentium 100 MI-Iz 
to find the global optimum. The results are summarized in 
Table 1. 
2. Example 2: Reactor Network Design 

This is an example problem of Manousiouthakis and Sour- 
las [1992] which optimizes a two reactor system as shown 
in Fig. 2. The objective is to maximize the concentration of 
component B in the output stream of reactor 2, satisfying a 
given constraint on the capital cost. The problem formulation 
is as follows. 

m i n  - x  4 

subject to 

X 1 -- 1 + k lx lx  5 = 0 

x 2 - x  1 + k 2 x 2 x 6  = 0 

x3 + X 1 -  1 + k 3 x 3 x 5  = 0  

X 4 - -  X 3 "]- X 2 -- X 1 + k 4 X 4 X 6 = 0 

05 05 x 5 +x  6- <4  

k3 
A - ~ B  ~ C  

x5 = Vt 

Fig. 2. A two reactor system. 

A,B,C 

x~ = c^i 
X 3 = Oh2 

A k2 k4 
- - ' -~  B " - - ~  C 

~1 ~ A,B,C 

X2 = C81 

x4= c~ 
X6 = V 2 

0 < x < ( 1 ,  1, 1, 1, 16, 16) 

where k1=0.09755988, k2=0.99 kl, k3=0.0391908, and k4=0.90 
k3. This problem has three local minima as listed in Table 
2. Local 1 corresponds to using reactor 1 only, local 2 cor- 
responds to using reactor 2 only, and local 3, which is the 
global optimum, corresponds to using both. Note that the 
difference in the objective function value between local 2 
( - 0 . 3 8 8 1 0 2 )  and local 3 ( -0 .388812)  is extremely small. 
Therefore, this problem will check the robustness of the test- 
ed algorithm. The results are summarized in Table 2. 

Ryoo and Sahinidis [1995] reported that their algorithm with 
the optimality tolerance E=10 -6 located the global optimum 
by solution of 179 subproblems, and the computation time 
was 21s on Sun SPARCstation 2. In this work, the variables 
x5 and x6 were selected as the x variables, and x~, x2, x3, and 
x4 as the y variables. The implementation of the proposed al- 
gorithm with er -4 and eo=10 -4 required 20,651 subproblems 
and computing time of 11.87s on Pentinm 100 MHz to find 

Table 2. Computation results of example 2 

Number of branching Convergence Objective Number of Computing 
Algorithm Class variables criterion function value subproblems time 

Ryoo and Sahinidis Underestimator 6 e=10 6 - -  0.388812 179 21s on Sun 
[1995] SPARCstation 2 

This work Interval analysis 2 er=l 0 4 - - 0 . 3 8 8 8 1  20,651 11.87s on 
eo=10 4 Pentium 100 MHz 
er 4 - 0.3888 6,281 1.81s on Pentium 
Eo=lO -3 100 MHz 

Local 1: f = -  0.374617 at x=(0.390479, 0.390479, 0.374617, 0.374617, 16, 0) 
Local 2: f = -  0.388102 at x=(1, 0.392874, 0, 0.388102, 0, 16) 
Local 3: f = -  0.388812 at x=(0.771462, 0.516997, 0.204234, 0.388812, 3.036504, 5.096052) 
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the global optimum. The algorithm also located the global 
optimum with E/=10 -4 and ~=10 -3, and in this case, the num- 
ber of subproblem was 6,281, and the computing time was 
1.81s. 
3. Example 3: Heat Exchanger Network Synthesis 

This is an example problem of Floudas and Ciric [1989] 
which determines the optimal configuration of two heat ex- 
changers for two hot streams and one cold stream. The su- 
perstructure of the heat exchanger network is as shown in 
Fig. 3. The problem formulation for minimizing the capital 
cost is as follows. 

min 

l OOi  oo 
2.5 2~/(320-t2)(300-t1)+ (320-t2):  (300-tl) 

+1200[ 1000 

[ 0 . 2 / 2  a](340- t4) (300- t3) + 
(340-t4) 6(300-t3) / 10"6 

subject to 

fl + f2 = 10 (2) 

fl + f6 = f3 (3) 

f2+f5 = f4 (4) 

320 K 

if7 t lv  

fs 

fl T t2 

C1 ~T=IOOK / I f~ 
f=lO 

f4 fs. 
t3 t4 

Fig. 3. A heat exchanger network superstructure. 

fs+fT=f3 (s) 

f6+fs= f4 (6) 

100 fl + t4 f6 = tl f3 (7) 

100f 2 + t2f 5 = t3f 4 (8) 

f3 (t2 - h) = 800 

f4(t4 - t3) = 1000 

0 < f < 1 0  

100 --- t < (290, 310, 290, 330) 

In order to improve the numerical stability of this problem, 
all the constraints were scaled using new variables defined 
by the original variables divided by their upper limits, and 
adjusting the coefficients of the equations in terms of the 
new variables to the order of magnitude of one. The objec- 
tive function was not scaled, because the optimality tolerance 
can be adjusted independent of the feasibility tolerance in 
the proposed algorithm. This problem has 3 local minima in- 
cluding the global minimum as shown in Table 3. Local 1 
corresponds to the parallel configuration, local 2 corresponds 
to the 1-2 serial configuration, and local 3, which is the glo- 
bal optimum, corresponds to the 2-1 serial configuration. 

The above problem has 12 variables and 9 equality con- 
straints, and thus 3 degrees of freedom. However, it was im- 
possible in this work to find 3 x variables and 11 y vari- 
ables with which the algorithm converges. While many al- 
ternatives exist, the following 6 variables were selected as 
the x variables: f3, f4, tx, t2, t3, and t4. The intervals of the 
other 6 variables (the y variables) are determined as tight as 
possible taking advantage of all of the equality and inequa- 
lity constraints whenever possible. For example, when the 
intervals of ~, f4, h, t2, t3, and t4 are known, the intervals of 
fl, f2, fs, and f6 can be determined by Eqs. (3), (4), (7), and 
(8), and those of f7 and f8 by Eqs. (5) and (6). The intervals 
of f~ and f: can further be reduced by Eq. (2) as follows. 

max(lb fl, 1 - ub re) -< fl < min(ub fl, 1 - lb f2) 

max(lb fz, 1 - ub fl) -< f2 < min(ub f:, 1 - lb fl) 

This process can decrease the extent of underestimation of 
the objective function, and thus greatly improves the efficien- 
cy of the branch and bound procedure without loss of glo- 

Table 3. Computation results of example 3 

Number of branching Convergence Objective Number of Computing Algorithm Class 
variables criterion function value subproblems time 

Ryoo and Sahinidis Underestimator 8 e=10 6 12292.467132 1 2.2s on Sun 
[1995] SPARCstation 2 

This work Interval Analysis 6 e/=10 4 12290. 57,041 34.70s on Pentium 
~o=10 +2 100 MHz 
13r=10 -' 12200. 4,591 2.64s on Pentium 
13o =10+3 100 MHz 

Local 1:obj=24,172 at f=(3.8095, 6.1905, 3.8095, 6.1905, 0, 0, 3.8095, 6.1905), t=(100, 310, 100, 261) 
Local 2:obj=22,970 at f=(10, 0, 10, 10, 10, 0, 0, 10), t=(100, 180, 180, 280) 
Local 3:obj=12,292 at f=(0, 10, 10, 10, 0, 10, 10, 0), t=(200, 280, 100, 200) 
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bal optimality. 
Ryoo and Sahinidis [1995] reported that their algorithm 

with the optimality tolerance e=10 6 solved one subproblem 
consuming 2.2s on Sun SPARCstation 2 to find the global 
minimum. The proposed algorithm with E/=10 -4 and eo=10 § 
required 57,041 subproblems and computing time of 34.70s 
on Pentium 100 MHz. When more relaxed tolerances of et= 
10 2 and Eo=10 § were used, the number of subproblems was 
4,591, and the computing time was 2.64s. The results are sum- 
marized in Table 3. 

DISCUSSION AND SUGGESTIONS 

The underestimator branch and bound algorithms such as 
the algorithm of Soland [1971] or Ryoo and Sahinidis [1995] 
use a local optimizer to solve each subproblem. For such al- 
gorithms, a very small value for the optimality tolerance can 
be used without significant loss of efficiency, as shown by 
Ryoo and Sahinidis [1995]. For the interval analysis branch 
and bound algorithms such as proposed in this work, how- 
ever, it is extremely inefficient to rely solely on interval analy- 
sis to locate the global optimum within a strict accuracy. This 
is because the objective function is evaluated at the midpoint 
of the box for each subproblem. The experimental data in 
Tables 2 and 3 indicate that significant improvement in the 
efficiency of the proposed algorithm is obtained by relaxing 
the feasibility and optimality tolerances. Therefore, a two tier 
approach to global optimization is suggested, in which the 
proposed interval analysis algorithm is used with relatively 
large feasibility and optimality tolerances, and then the result 
is used as a starting point for a local optimizer so that the ac- 
curate global solution is obtained. 

A significant advantage of the interval analysis algorithms 
such as proposed in this paper is that the original problem 
formulation can directly be used without any modifications 
unlike the other algorithms such as GBD or the underestima- 
tor algorithms which require major reformulation of the ori- 
ginal problem to the form that is allowed, sometimes intro- 
ducing many new substitution variables. Therefore, the pro- 
posed algorithm is considered suitable for maintaining the size 
of the given problem as small as possible. 

A disadvantage of the interval analysis algorithms is that 
the number of required subproblems is much larger than that 
of the underestimator algorithms. The reason is that the low- 
er bounds on the objective function calculated by interval anal- 
ysis are not as tight as determined by the underestimator al- 
gorithms. However, it is a great advantage that each sub- 
problem can easily be solved without any local solver requir- 
ing only small amounts of computer memory and CPU time. 
Therefore, the proposed algorithm is considered suitable for 
implementation by the massively parallel computing techni- 
que, which is suggested as future work. Futhermore, develop- 
ment of a new method for calculating tighter lower bounds 
is also suggested. 

Most importantly, the efficiency of any deterministic algo- 
rithm based on the branch and bound technique mainly de- 
pends on the number of branching variables because of the 
inevitable NP-hardness of the nonconvex NLP problems. The 

proposed algorithm is considered the most suitable for reduc- 
ing the number of branching variables. However, the meth- 
od of reducing the number of branching variables presented 
in this paper, which uses the equality constraints in the form 
of Eq. (1), is just the simplest case. Development of methods 
for using other types of equality and inequality constraints is 
suggested as future work. 

CONCLUSION 

An interval analysis branch and bound algorithm has been 
proposed which is suitable for large nonconvex nonlinear pro- 
grams which have many equality constraints. Although the 
nonlinear equality constraints are generally a burden to the 
other algorithms, this algorithm exploits them to reduce the 
number of branching variables, which is the actual measure 
of the size of a problem. Therefore, the algorithm is con- 
sidered suitable for chemical process optimization problems 
which are large but have relatively small degrees of freedom. 
The proposed algorithm should be used with moderately small 
feasibility and optimality tolerances, and the final solution 
can be refined by a local optimizer. Case studies indicate 
that the proposed algorithm can be applied to global optimi- 
zation of small chemical processes. Application to larger pro- 
cesses will be possible in the future when significant improve- 
ment in the computing power is achieved. 
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